RAP ISSUES AND OPTIONS: BEST PRACTICES

Rebecca S. McDaniel 51st Paving and Transportation Conference

Albuquerque, NM January 6, 2014

RAP Issues and Options - Outline

Variations in RAP Specs and Usage

Barriers to RAP Use

Lowering the Barriers

Best Practices

HOW MUCH RAP IS IN AN AVERAGE MIX?

2012 NAPA/FHWA Survey – 2011 Usage

2011 AVERAGE RAP CONTENT BY STATE

WHY AREN'T CONTRACTORS AND AGENCIES USING ALL THE RAP THEY CAN?

- Guidelines require use of softer binder for high RAP contents.
 - May not be readily available
 - May be more expensive
 - May be harder to compact
- There are RAP surpluses in some areas and shortages in other areas.
- Lingering concerns about performance effects.

ONGOING ISSUES/CONCERNS

- Is RAP a "black rock" or does it blend?
 - When is binder grade change needed?
 - What effects do softer binders have?
 - Will RAP mixes crack more than virgin?
- What about the RAP aggregates?
 - What specific gravity should be used?
 - Friction of unknown aggregates? (See previous presentation on RAP Materials)
- Is RAP more variable than virgin?
 - How can I control production?

BLENDING VS BLACK ROCK

- There is evidence that, in most cases, RAP binder and virgin binder do blend
 - Complete blending highly unlikely
- RAP is not a black rock
- Low RAP contents → insignificant effect
- Higher RAP contents → RAP binder becomes significant

OPTIONS TO ADDRESS BLENDING

Know your materials

- Assess materials regionally or statewide (virgin and RAP)
- Test stockpiles regularly

Test for blending

- Compare virgin and recycled mixes
- Bonaquist approach

Average RAP Binder Properties

	High	Low
	Temperature	Temperature
Mean	90.2	-11.1
Std. Deviation	5.02	3.11
Minimum	83.0	-21.3
Maximum	104.0	-0.8

- PG 90-11
- No statistical difference found between different regions of Indiana
- 33 stockpiles tested

BONAQUIST ANALYSIS

- Compare measured mix modulus to estimated modulus
 - Hirsch model using recovered binder (blended) and mix volumetrics
- Suggests how the combination of binders is behaving in the mix
 - Does the mix act as if the binders mixed or not?

THOROUGH MIXING

Reduced Frequency, Hz

Modulus, |E*| MPa

POOR MIXING

Reduced Frequency, Hz

BINDER GRADE CHANGE

- Needed to counteract stiffness of RAP binder
 - More critical as RAP content increases
 - Helps to reduce cracking issues (thermal and fatigue)
- But softer binders may be less readily available, more difficult to work with.
- So, it is important to change the grade at appropriate RAP contents.

BINDER GRADE CHANGE

- AASHTO specifications call for grade change (one grade drop) at 15% RAP
 - May be too conservative.
- Again, need to know your materials
 - From INDOT example, based on their testing and other research, they determined they could allow up to 25% RAP without a grade change and up to 40% with a one grade drop.
 - Not true for all states/areas

DO RAP MIXES CRACK MORE?

- They can, if RAP is not properly accounted for.
- Randy West, at NCAT, studied projects from 18 states/provinces in LTPP program
 - At least 30% RAP
 - Compared to virgin mixes on same projects
 - Compared cracking, smoothness, rutting
 - Projects were 6 to 17 years in age
 - Compared 2 overlay thicknesses (2" and 5")

SPS-5 PROJECT LOCATIONS

PERFORMANCE OF RAP MIXES

- Pavements using ≥ 30% RAP performed equal to or better than virgin pavements in most cases
- Somewhat more transverse and fatigue cracking in some pavements with RAP compared to pavements with all virgin materials
- Differences in cracking for several locations may have been due to lower asphalt contents and/or higher dust contents (poor mix design)
- Some projects did not have binder grade change

WITH APPROPRIATE MIX
DESIGN AND MATERIAL
SELECTION, THESE ISSUES
CAN BE ADDRESSED.

AGGREGATE ISSUES

- What is specific gravity of RAP aggregates?
 - Some states use effective specific gravity (and adjust VMA requirement)
 - Others backcalculate RAP aggregate gravity using an assumed absorption value
 - Works if you have confidence in absorption
 - Others specify a value to use
 - Can test extracted aggregates if you know your agg properties do not change during ignition oven testing or extraction

RAP VARIABILITY

- Several studies show RAP is no more variable than virgin (if properly stockpiled and handled)
- Mixed stockpiles are more problematic need more attention to detail
- Processing the RAP by crushing or fractionating can reduce variability

 Remember, you can mess up even with virgin materials – need to follow best practices!

BUILDING ON PAST SUCCESS: GAME PLAN FOR INCREASED USE

- Sourcing
- Processing
- Stockpiling
- Reducing moisture
- Control during production

PROPER PROCESSING OF RAP BEGINS WITH REMOVAL

When possible:

Mill layers separately if aggs are a concern

 So you can reuse high quality aggregates in new surface mixes

Keep different projects (and layers) separate

PROCESSING RAP

- Mixed RAP can be variable
 - Crushing/Screening to break up clumps
 - Processing can improve uniformity
 - Uniformity is essential to meet specifications

FRACTIONATED RAP = CRUSHED AND SCREENED INTO DIFFERENT SIZES

- Improves uniformity (remixes)
- Allows use of different sizes to meet mix design
- Better control of gradation (and binder content)

STOCKPILING PRACTICES

- Avoid segregation
- Avoid contamination
- Reduce stockpile moisture

 Test the RAP stockpiles regularly – know what is in your stockpiles!

SEGREGATION

- Follow normal stockpiling techniques to minimize segregation
 - Building the pile
 - Managing the pile
 - Pulling material

CAUSES OF CONTAMINATION

- Stockpiles too close together can intermix

 keep separated
- Putting wrong material in stockpile label clearly
- "Dirty" stockpile pave stockpile area
- Tracking mud into pile install drainage to help keep area dry, keep mud off loader tires

Not Good

REDUCE STOCKPILE MOISTURE

- Expect to lose 12% production capacity for every percent stockpile moisture above 2%
- Reduce fuel consumption and drying costs by keeping your materials dry
- Lower moisture leads to increased production capacity
- Lower maintenance costs
- Lower paving costs

How to Reduce Moisture

- Paved stockpile area
- Sloped stockpile area
- Covered stockpiles

BENEFITS OF SLOPED STOCKPILE

- Moisture drains to bottom of pile
- On slope, moisture drains away
- Slope grade 3 to 4°
- Pick off high side of pile
- Face slope towards sun to more drying
- Can reduce moisture 2% overall

COVERED STOCKPILES

Still rare but useful, especially in high moisture areas

PLANT CONTROL FOR RAP MIXES

- Control plant inputs (cold feeds)
- Control material variability
- Follow-up Quality Control test results
- Watch drum flighting maintain protective RAP veil
- Avoid overheating mix
- Normal production care and attention

BEST PRACTICES

- Mill layers separately when you can
- Process the RAP and stockpile properly
- Consider fractionating the RAP
- Avoid contamination
- Keep the RAP dry –paved and sloped area, covered stockpile
- Test the RAP stockpiles regularly
- Watch plant production

CONCLUSIONS

RAP has long history of successful use.

But, there are issues and concerns that need to be addressed – can be controlled

Asphalt recycling is sustainable.

Asphalt recycling is economical.

Asphalt recycling works!

SORRY I CAN'T BE THERE!

Rebecca S. McDaniel
Technical Director
North Central Superpave Center
Purdue University
West Lafayette, IN
765/463-2317 ext 226
rsmcdani@purdue.edu
https://engineering.purdue.edu/NCSC